25 research outputs found

    Slot-Line UWB Bandpass Filters and Band-Notched UWB Filters

    Get PDF
    Slot-line ultra-wideband (UWB) bandpass filters and band-notched UWB filters are presented for UWB systems. Three types of slot-line multimode resonators are proposed and studied. Microstrip feed lines are used to realize the desired strong external coupling in a simple manner. By properly allocating the resonant modes of resonator and external coupling, UWB bandpass filters have been realized. Next, microstrip resonators, i.e., open-loop resonator, stub-loaded dual-mode resonator, and triangular dual-mode ring resonator, are loaded to the slot-line; notched bands are realized in the UWB passbands. The design methodology has been verified by the measured results

    Hybrid Microstrip/Slotline Ultra-Wideband Bandpass Filter with a Controllable Notch Band

    Get PDF
    An ultra-wideband (UWB) bandpass filter (BPF) with a controllable notch band is presented by using hybrid microstrip/slotline structure. Firstly, a slotline resonator with symmetrically loaded stubs is fed by two microstrip lines to produce a UWB bandpass filtering response. Secondly, a microstrip triangular loop resonator is externally loaded over the slotline, and a notch band is introduced in the UWB passband. The notch band is determined by the perimeter of the loop resonator. Thirdly, two patches are added as the perturbation element to the corners of the microstrip resonator to excite a pair of degenerate modes. Bandwidth of the notch band can be tuned by properly selecting the patch size. Circuit model for the microstrip resonator loaded slotline is given and studied. Finally, the filter is designed, simulated, and measured. Measured results have agreed well with the simulated ones, demonstrating that a UWB filter with a controllable notch band has been realized

    Single-Feed Slotted Bowtie Antenna for Triband Applications

    No full text

    High-temperature superconducting microwave circuits and applications

    No full text

    Mixing Characteristics of Binary Mixture with Biomass in a Gas-Solid Rectangular Fluidized Bed

    No full text
    Aiming to better understand the biomass pyrolysis and gasification processes, a detailed experimental study of the mixing characteristics is conducted in a fluidized bed with binary mixtures. Rapeseed is used as biomass, and silica sand or resin as inert material. The effect of mixture composition, initial packing manner, and superficial gas velocity on the concentration distribution is investigated in a rectangular fluidized bed by means of photography and sampling methods. The results show that the mixture composition plays an important role in the axial solids profile of binary mixtures. The mixing behavior of binary mixture is dominated by the bubble movement. The axial distribution of binary mixtures becomes uniform with increasing superficial gas velocity, whilst no obvious effect of initial packing manner is observed in this study

    Days-in-Milk and Parity Affected Serum Biochemical Parameters and Hormone Profiles in Mid-Lactation Holstein Cows

    No full text
    It is well known that serum biochemical parameters and hormones contribute greatly to the physiological and metabolic status of dairy cows. However, few studies have focused on the variation of these serum parameters in multiparous mid-lactation cows without the interference of diet and management. A total of 287 Holstein dairy cows fed the same diet and maintained under the same management regime were selected from a commercial dairy farm to evaluate the effects of days-in-milk (DIM) and parity on serum biochemical parameters and hormone profiles. Milk yield and milk protein content were affected by DIM and parity (p < 0.05). Milk protein yield showed a numerically decreasing trend with parity, and it was relatively constant in cows with parities between 2 and 4 but lower in cows with parity 6 (p = 0.020). Ten and five serum biochemical parameters related to protein status, energy metabolism, liver and kidney function, and oxidative stress were affected by DIM and parity, respectively (p < 0.05). Glucagon, insulin-like growth factor 1 concentration, and the revised quantitative insulin sensitivity check index were significantly different (p < 0.05) among cows with different DIM. Parity had no effect on hormone concentrations. An interaction between DIM and parity effect was only detected for glucagon concentration (p = 0.015), which showed a significantly increasing trend with DIM and overall decreasing trend with parity. In summary, DIM and parity played an important role in affecting the serum biochemical parameters and/or hormones of dairy cows, with serum parameters affected more by DIM than parity

    Individually controllable dual-band bandpass filter with multiple transmission zeros and wide stopband

    No full text

    A Novel Triple-Mode Bandpass Filter Based on a Dual-Mode Defected Ground Structure Resonator and a Microstrip Resonator

    No full text
    A novel triple-mode bandpass filter (BPF) using a dual-mode defected ground structure (DGS) resonator and a microstrip resonator is proposed in this paper. The dual-mode characteristic is achieved by loading a defected T-shaped stub to a uniform impedance DGS resonator. A uniform impedance microstrip resonator is designed on the top layer of the DGS resonator and a compact bandpass filter with three resonant modes in the passband can be achieved. A coupling scheme for the structure is given and the coupling matrix is synthesized. Based on the structure, a triple-mode BPF with central frequency of 2.57 GHz and equal ripple bandwidth of 15% is designed for the Wireless Local Area Network. Three transmission zeros are achieved at 1.48 GHz, 2.17 GHz, and 4.18 GHz, respectively, which improve the stopband characteristics of the filter. The proposed filter is fabricated and measured. Good agreements between measured results and simulated results verify the proposed structure well
    corecore